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GMTI Radar System Assumptions

Center Freq.
PRF

Sample Rate
Range
Pulses

Duty Cycle

10 GHz
1.2 kHz
20 MHz
112 km
32
10%

PARAMETERS

• 9 Channels
– 7 overlapping subarrays
– 2 auxiliaries

• Transmit Pattern?
• Transmit Power?

1 3 5 7

2 4 6

3.84 m

6 cm

ANTENNA ARRAY



MIT Lincoln Laboratory
KASSPERReview-4

NBP 3/28/2002

Clutter Spectral Response

Center Frequency
PRF

Platform Velocity

10 GHz
1.2 kHz
200 m/sec
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Baseline STAP Architecture

Doppler
Filter

32-Point

Pulse
Compression

Antenna
Array

… Radar
Receiver :

A/D, I/Q and
Equalization

Adaptive
Beamform

9 DOF
1 TR

STAP
10 DOF
10 TR

CFAR
Detection

10 TR

9 Channels
32 Pulses

16k Range Samples

5 Channels
32 Pulses

16k Range Samples

5 Channels
32 Pulses

16k Range Samples

5 Channels
32 Doppler Bins

16k Range Samples

3 Channels
32 Doppler Bins

16k Range Samples

Parameter
Estimation

and
Tracking

Target Detections

Lincoln Laboratory KASSPER Testbed

Adaptive
Beamform

9 DOF
1 TR

Estimated Sustained Throughput 33.7 Gflop/s
Estimated Peak Throughput Required 340 Gflop/s
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Ideal Eigen-Beam Response
(a.k.a Prolate Beams)

Subarray 3dB-Beamwidth 2.35º
Full Array 3dB-Beamwidth 0.92º
Assumes Hamming Weighting
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SINR Loss Performance for 
Different Beamspace Dimensions

CNR = 60dB
Azimuth = 0º

Uniform Clutter Distribution
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Beamspace K=6, UFDS = 0.905
Beamspace K=5, UFDS = 0.902
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* UFDS = Usable Free Doppler Space (SINR Loss > -5dB)



MIT Lincoln Laboratory
KASSPERReview-9

NBP 3/28/2002

Baseline STAP Architecture

Doppler
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STAP
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Lincoln Laboratory KASSPER Testbed
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Fully Adaptive, UFDS = 0.902
Beamspace K = 5, UFDS = 0.899
Adjacent Bin, UFDS = 0.765
Pri-Staggered, UFDS = 0.895

SINR Loss Comparison of Adjacent Bin 
and PRI-Staggered STAP

Select PRI-Staggered STAP as best compromise of performance,
computation complexity and training requirements 
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Comparison of Different Temporal 
Dimensions for PRI-Staggered STAP

-0.5 -0.25 0 0.25 0.5
-40

-30

-20

-10

0

Normalized Doppler

S
IN

R
 L

os
s

Without Temporal Tapers

Fully Adaptive, UFDS = 0.915 
Beamspace, K=5, UFDS = 0.912 
PRI-Staggered, 1 DFT, UFDS = 0    
PRI-Staggered,  2 DFTs, UFDS = 0.845
PRI-Staggered, 3 DFTs, UFDS = 0.859

-0.5 -0.25 0 0.25 0.5
-40

-30

-20

-10

0

Normalized Doppler

S
IN

R
 L

os
s

With Temporal Tapers

Fully Adaptive, UFDS = 0.915 
Beamspace, K = 5, UFDS = 0.899 
PRI-Staggered, 1 DFT, UFDS = 0    
PRI-Staggered, 2 DFTs, UFDS = 0.889
PRI-Staggered, 3 DFTs, UFDS = 0.895

Uniform Clutter Distribution
Number of Pulses = 18

Azimuth = 0º
CNR = 60dB



MIT Lincoln Laboratory
KASSPERReview-12

NBP 3/28/2002

Comparison of Different Temporal 
Windows for PRI-Staggered STAP
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PRI-Staggered, 20dB, UFDS = 0.819    
PRI-Staggered, 25dB, UFDS = 0.883    
PRI-Staggered, 30dB, UFDS = 0.887    
PRI-Staggered, 35dB, UFDS = 0.887    
PRI-Staggered, 40dB, UFDS = 0.883    

CNR = 60dB
Azimuth = 0º

Number of Pulses = 17
Temporal Degrees of Freedom = 2

Uniform Clutter Distribution

Alternatively, zero-padding the FFT in the Doppler filter or interpolation 
between adjacent Doppler bins can be used to reduce scalloping losses
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Cheap Windows for Staggered PRI

• If no window is used, the second DFT is computed from the first by

• This trick is not usually available for staggered PRI STAP for windowed DFTs
• But certain windows (Hamming, hanning, and others in a family) can be 

obtained by 3-point convolution in the frequency domain 

)ffF(WF 0
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Baseline STAP Architecture
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CFAR Issues

• In baseline system, the CFAR is garden variety split-window 
moving average. 

• All CFAR methods involve a choice of training data 
appropriate to characterize the interference competing with 
the sample under test. 

• We expect that KASSPER will experiment with a variety of 
CFAR ideas which choose such training data intelligently.

• The CFAR rule itself may be varied according to whether 
the particular sample under test is competing with a known 
clutter discrete.

• Therefore the CFAR in the baseline system should be 
viewed as a ``place-holder’’.
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Adequate Gain Constraint

• Classical Interference Cancellation uses w = R-1v 
• This protects adapted gain at one constraint v

• We can protect the adapted gain at multiple constraints 
v1,v2,…,vL but at a cost 

– Degrees of freedom
– Cancellation achieved

• We think it is better to constrain adapted gain using 
inequality constraints

• Choose w to minimize whRw subject to |vi
h w|  > 1
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Algorithm for Adequate Constraints 
Nulling
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20-tap FIR Filter Example 
Adequate Gain Constraint vs MGC

• Single Constraint (w = R-1v)
• Multiple Linear Constraints (at five positions marked ‘+’)
• Five Adequate Gain Constraints
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SINR Loss vs Number of Multiple Gain 
constraints

• Adapted SINR is poor near the jammer
• Interference notch is narrowest for R-1v
• Interference notch widens dramatically with additional constraints
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SINR Loss for Adequate Gain Constraint

Constraints span same 5 degrees as MGC method

-50 -40 -30 -20 -10 0 10 20-12

-10

-8

-6

-4

-2

0

2

SINR Loss with interference at -20º

S
IN

R
 L

o
ss

 [d
B

]

Normalized Frequency

AGC

MGC

R-1V



MIT Lincoln Laboratory
KASSPERReview-22

NBP 3/28/2002

Outline

• Introduction
• Baseline STAP Algorithm Description
• Adequate Gain Constraints
• KASSPER Algorithms
• Summary



MIT Lincoln Laboratory
KASSPERReview-23

NBP 3/28/2002

Terrain Selective Training

STAP training
– use ranges with clutter from same terrain type
– exclude ranges with roads in look direction

The training range is different for each target doppler hypothesis

Platform

allowed training
region

target hypothesis

road

com
peting 

clutter
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Terrain Boundaries and Roads

Roads and terrain boundaries composed of straight line segments.
Line segment end points (ri, ? i) treated as rectangular coordinates.

r

?
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Intersection of Line Segments
with ‘Constant Theta’ Lines
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LL STAP Simulation
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SINRLoss Expressions for Terrain Type 
Mismatches
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STAP Comparison 
for Mismatched Terrain Types

CNR
Spatial DOFs

Temporal DOFs
Pulses

Azimuth

40
5
2
17
0º

PARAMETERS

SINR Loss(R1, R2)

-0.5 -0.25 0 0.25 0.5
-20

-15

-10

-5

0

Normalized Doppler
S

IN
R

 L
os

s

PRI-Staggered, UFDS = 0.737

SINR Loss(R1, R1)

-0.5 -0.25 0 0.25 0.5
-20

-15

-10

-5

0

Normalized Doppler

S
IN

R
 L

os
s

PRI-Staggered, UFDS = 0.899



MIT Lincoln Laboratory
KASSPERReview-29

NBP 3/28/2002

Simulator Example for Terrain Mismatch 
Terrain Training
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STAP Comparison 
for Mismatched Terrain Types
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Output after CFAR Normalization
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KASSPER Algorithm Taxonomy

STAP METHODS

Spatial
Adaptivity

Pulse
comp Doppler STAP CFAR

Train

• Obtain prior knowledge from maps, SAR, other sensors, previous looks.
• Train using terrain knowledge.
• Train using data-adaptive selection or exclusion
• Edit detections out of training and try again 
• Protect target gain with multiple adequate gain constraints.
• Special treatment of clutter discretes

– Suppress known clutter discretes with artificial training.
– Exclude known clutter discretes from global training.

• Use a-priori estimated correlation to reduce training requirements.
• Apply STAP in stressed doppler bins, easier processing in other doppler bins
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KASSPER Algorithm Taxonomy

CFAR METHODS

Spatial
Adaptivity

Pulse
comp Doppler STAP CFAR

Train

• Obtain prior knowledge from maps, SAR, other sensors, previous looks.
• Train using terrain knowledge.
• Edit detections out of training and try again 
• Adjust threshold  using a-priori expectations, e.g. targets more likely on 

roads, less likely on steep terrain.
• Mark detections `doubtful’ near known clutter discretes.
• Use multi-dimensional tests (like ACE) to distinguish target-in-clutter from 

known-discrete-in-clutter.



MIT Lincoln Laboratory
KASSPERReview-34

NBP 3/28/2002

Summary

• Designed and specified a baseline STAP architecture for 
the Lincoln Laboratory KASSPER Testbed to

– Evaluate candidate KASSPER algorithms

– Benchmark real-time processing

• Initiated performance assessment of KASSPER algorithms 
for terrain specific training

• Developed a novel adaptive beamforming technique

– Initial results indicate adequate gain constraints provide 
benefits over multiple linear constraints 

• Outlining other candidate KASSPER algorithms for 
consideration


